Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

نویسندگان

  • Lingping Kong
  • Gang Liu
  • Jue Gong
  • Qingyang Hu
  • Richard D Schaller
  • Przemyslaw Dera
  • Dongzhou Zhang
  • Zhenxian Liu
  • Wenge Yang
  • Kai Zhu
  • Yuzhao Tang
  • Chuanyi Wang
  • Su-Huai Wei
  • Tao Xu
  • Ho-Kwang Mao
چکیده

The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation ...

متن کامل

Photoexcited Carrier Lifetime and Refractive Nonlinearity in Direct and Indirect Band Gap Crystals on the Z-Scan Technique

The Photoexcited carrier lifetime (τ) and peak to valley transmission difference (ΔTp-v) in direct and indirect band gap crystals has been investigated by the use of single beam open and closed aperture z-scan technique using frequency doubled Nd:YAG laser. The peak to valley transmission difference (ΔTp-v) is found to be of the order of 10-2 in case of direct band gap crystals and of the order...

متن کامل

Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"?

The outstanding performance of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic devices is made possible by, among other things, outstanding semiconducting properties: long real charge-carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime, τ of ~1 μs or more in single crystal and polycrystalline films. 1–9 Top electronic transport materials will hav...

متن کامل

High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite...

متن کامل

High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites

Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants. The ratio of the two is found to defy the Langevin limit of kinetic charge capture by over four orders of magnitude. This mechanism causes long (micrometer) charge-pair diffusion lengths crucial for flat-heterojunctio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 32  شماره 

صفحات  -

تاریخ انتشار 2016